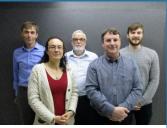
Wednesday 3rd February 2021

NEA Technology Training courses



Dr Paul Rogers

NEA Technical and Training Collaboration

Overview of presentation

- NEA Technical Innovation Fund (TIF)
 - Funded installation of large and small measures
 - Monitoring and evaluation
- Converting the lessons into training
- Energy in the home: a technical approach
 - 8 Modules
 - Practical examples from the course

Technical Innovation Fund Programme

April 2015 - March 2019

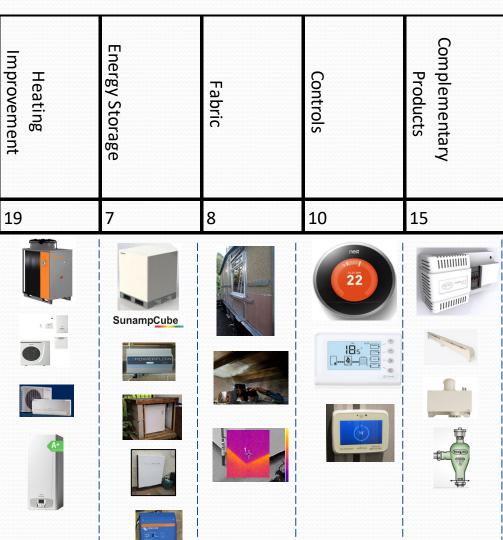
46 projects in TIF

£5 million programme

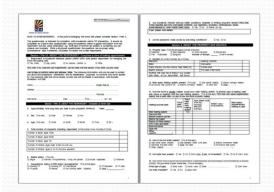
£2.6 million gap and match funding generated (combined)

Headline outputs

46 projects

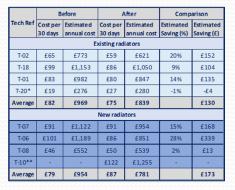

households received a measure

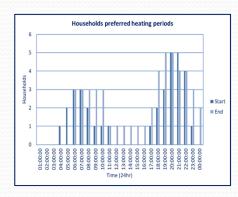
measures installed


19 technologies monitored

67 products monitored

Technical innovation Fund - Summary




Qualitative, Quantitative & Evaluation

Challenges

- Small samples of monitored properties
- Complex projects with packages of measures
- Complex projects with other improvements being carried out during monitoring period
- Variability in samples (Behaviour, occupancy, energy use etc)
- Variability in resident support and instruction

Technical innovation Fund - Reports

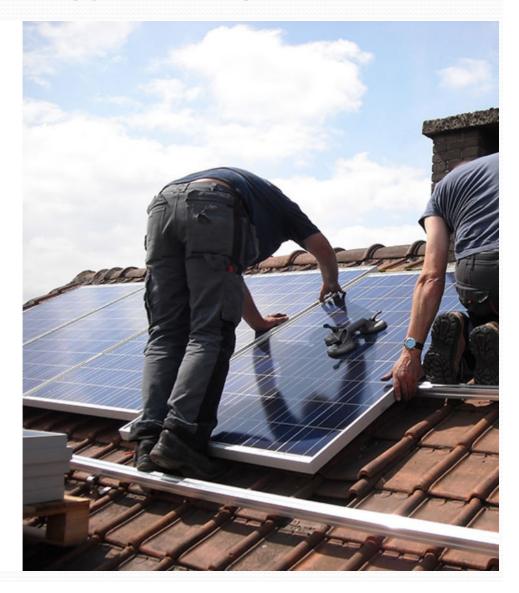
https://www.nea.org.uk/what-wedo/resources-publications/?tag=technical

Further dissemination of learning

 Use learnings from the Technical Innovation Fund to create a suite of training courses on technologies

Further dissemination of learning

- In house pilot of face to face course for 5 modules in Dec 2019
- COVID 19 switch in delivery for NEA Training
- Conversion to E-learning, extra content, more modules


Energy in the home: a technical approach

- Solar and Energy Storage
- Insulation
- Heating controls and technologies
- Heat Pumps
- Decarbonisation of fuel poor homes
- Electric heating
- Biomass, CHP and Heat Networks
- Electricity tariffs

Energy in the home: a technical approach

Solar and energy storage

Case Study 1 – Solar PV in Cheshire (repeat click text area for more info)

- Nominally identical PV systems installed at similar times
- Annual generation ranged from 1,695 to 2,731 kWh
- Total generation from 7,877 to 15,637 kWh
- Issues
 - Shading and inverter failures
 - Slow response to issues

• Battery storage installation issues – wiring, separation distance

Battery storage challenges

- Batteries need a consistent internet connection
- Select households who will benefit
- Batteries and time of use tariffs
- Solar system issues

Heating controls and technologies

Energy in the home: a technical approach

Heating controls and technologies

Heating controls and technologies

The Netatmo is really easy to use.

When in a chip shop, after coming home late, I was able to turn on the heating and avoid coming home to a cold house.

At Luton airport when going on holiday in winter, I was able to set the heating to 'frost guard', which gave me peace of mind.

Heating Controls and technologies

Smart thermostat challenges

- Resident does not have internet or smart phone
- Resident switches broadband provider
- Other operational challenges
- New resident moves in

Heating Controls and technologies

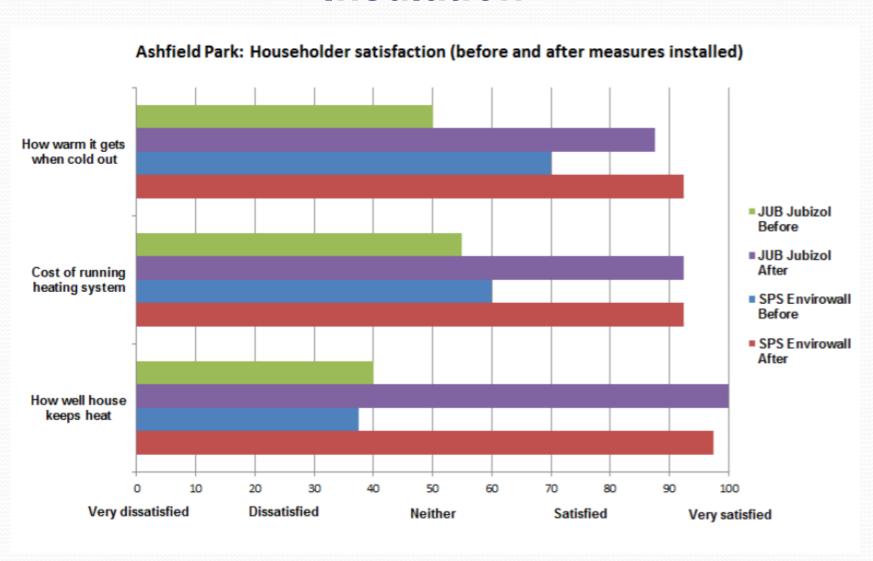
Smart thermostat savings

- Manufacturers often claim savings of 20 to 40%
- May be based on simulations of best performance
- Greatest savings likely in overheated homes
- Many of the fuel poor underheat their homes
 - More likely to see a rise in consumption

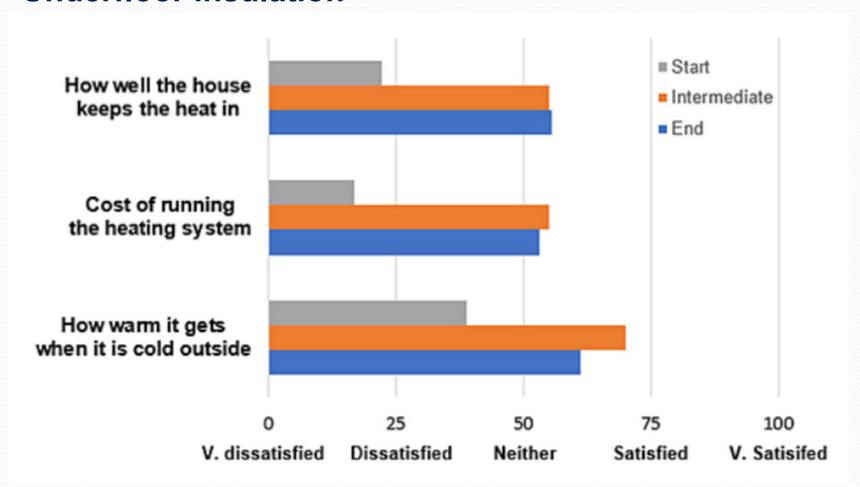
Energy in the home: a technical approach Insulation

Park Home Insulation

Stage 1


Stage 3

Stage 2


Stage 4

Park home insulation

- High levels of resident satisfaction
- Average savings of about 20%
- Payback time based on bill reduction of over 40 years
- Additional benefits
 - Improved appearance
 - Improved sound-proofing
 - Reduced condensation and mould
 - Health benefits

Underfloor insulation

Underfloor insulation

- Installations in solid wall flats or houses over 100 years old
- Average savings of about 13%
- Payback time based on bill reduction of over 30 years
- Lower improvement in resident satisfaction
 - Issues with drafts and heat loss elsewhere
 - Single glazed windows
 - Solid walls

Heat Pumps

Energy in the home: a technical approach

Heat pumps

Heat Pumps

Hybrid heat pump with existing oil boiler

- 5kW ASHP added to oil boiler to become hybrid
- System automatically works with ASHP, oil or both
- Mode depends on temperature and price of fuels

Heat Pumps

Hybrid heat pump with existing oil boiler

- Only one system correctly used in hybrid mode
- One used oil while tank full and then switched to ASHP
- Another switched between systems manually
- Hybrid mode, SCoP = 2.65
- ASHP on own, SCoP = 1.82
- Issue over training

Thank you for listening Any Questions?